稀土元素的应用及检测技术 发布时间:2023-11-27
稀土元素在地壳中的富集过程、矿物学特征,及其在陆地和海洋上不同类型的沉积物中的保存形式。除了总结稀土元素的地球化学行为,帮助了解地球上其赋存的主要储库外,还介绍了稀土元素在农业及医学领域的研究进展及应用。归纳了包括稀土元素开采导致的环境危害,稀土元素对人类健康的影响,以及大规模倾倒含有大量稀土元素的电子废物所产生的环境问题。

提出了未来稀土供应的新策略,包括从燃煤的灰分中提取和从电子废物中回收等等方法,特别强调了在冶金和回收过程中,单个稀土元素分离技术的最新进展。系统介绍了稀土元素精确测定的分析方法,例如X射线荧光光谱(XRF),激光诱导击穿光谱仪(LIBS),中子活化分析仪(INAA),电感耦合等离子发射光谱(ICP-OES),辉光放电光谱分析(GD-MS),电感耦合等离子体质谱仪(包括ICP-MS,ICP-TOF-MS,HR-ICP-MS激光烧蚀以及溶液雾化)。


在所有这些活动中,准确地测定不同物质中不同形态的稀土元素,无论是固体形式还是液体形式,都是至关重要的。目前,已有一系列高灵敏度、高选择性的分析技术可用于准确、准确地测定不同材料中的稀土元素。高分辨电感耦合等离子体质谱(HR-ICP-MS)具有多元素性质、高灵敏度和对大多数干扰的高分辨率等特点,必将成为未来稀土元素活度分析的重要工具。

由于不同的稀土元素的用途差别很大,因此需求变化也很大,分离出单一稀土的价格也相差甚大。所以,在评价一个矿山的开采价值时必须要了解混合稀土中各稀土元素的含量即稀土的配分.为此,要对混合稀土中各稀土含量进行测定,只能用光谱分析法才能完成这个任务。稀土元素的直接光谱测定,一般可满足三个九的单一稀土纯度分析要求,采用控制光谱分析可达四个九分析要求,对于五个九则要求进行化学处理、分离杂质才能进行。目前使用得较多的是ICP法和x射线荧光光谱法。

1、X射线荧光光谱分析。该法是利用稀土原子的特征x射线光谱来测定各稀土的含量。稀土元素除忆以外在60kV的电压激发下不产生K线,故可利用L线,因此可根据不同稀土I.线的强度,确定该稀土元素的含量;但由于各稀土元素的L线彼此相近,原子序数小的相邻元素的吸收端又重叠,因此需要较正。

2、ICP法(电感偶合等离子体发射光谱法)。该法是较先进的方法之一,它是稀土元素在高温氢气氛条件下,在电感藕合等离子体中被激发成离子,发射出多条谱线。利用稀土元素之间不重合的特征灵敏谱线作为测定线,测出该谱线的强弱与已知标样的谱线进行比较,就可对每种稀土元素进行定量分析。ICP法灵敏度高,可达ppm级,工作曲线的线性范围宽,而且准确度也高。

在新出的拟立项国家标准项目公开征求意见稿中,“稀土金属及其氧化物中稀土杂质化学分析法 第6部分:铕中镧、铈、镨、钕、钐、钆、铽、镝、钬、铒、铥、镱、镥和钇的测定”中新增了ICP-MS/MS的方法电感耦合等离子体串联质谱(ICP-MS/MS)的问世使铕及氧化铕中的铥元素的检测更加快速、简便。不需要预分离铕基体,直接进行ICP-MS/MS测定,稀土元素的检测下限达到0.1μg/gICP-MS/MS这项新技术应用于稀土铕产品中分析检测,解决高纯铕稀土中痕量稀土铥杂质元素的直接分析的技术难点。

高纯稀土通常是指纯度高于99.99%的稀土金属或其氧化物。高纯稀土材料中存在的其它稀土杂质元素常会对最终产品的功能产生影响,随着提炼技术的不断改进,使得稀土氧化物纯度可达到6N(行业上通指稀土杂质元素含量),从而对于痕量稀土杂质测定方法提出了更高的要求。
版权所有:包头稀土新材料技术研发中心 Copyright@2021-2024 All rights reserved   |   蒙ICP备2024008810号